Collaborative Research Center/Transregio 63
"Integrated Chemical Processes in Liquid Multiphase Systems"
Sub-Coordinators: Prof. Dr.-Ing. Kai Sundmacher, Dr.-Ing. Katharina Zähringer
Researchers: M. Sc. Karsten Rätze, M. Sc. Annemarie Lehr
Subproject B1 is involved in the synthesis of new and innovative reaction networks. Based on the elementary process functions (EPF) methodology developed during the previous funding periods, the design approach is generalized to consider:
By using dynamic optimization and optimal control, the optimal operating conditions can be derived for different objectives. Evaluation of the control profiles allows for the derivation of reactor-separator-networks and integrated reactor-separator-systems which can be used for the development of integrated processes together with subproject D1. In B1 the approach is exemplified using the reductive amination of 1-undecanal and the hydroaminomethylation of 1-decene.
Besides the process design, innovative reactor modules are build and characterized experimentally as well as numerically to quantify the effects of
on the stability and robustness of the reactor. Special attention is also given to the mixing properties in the case of different phase combinations. These investigations are performed using stand-alone models and under mini-plant conditions together with the subprojects D2 and D3 to validate the methodological approach and to further improve the reactor design.
More information:
Connected projects within the Collaborative Research Center/Transregio 63
A10 (Böhm, Hecht, Kraume): Gas/Liquid Mass Transfer in Reactive Multiphase Systems
Mansour, M.; Kasetti, S.; Thévenin, D.; Nigam, K. D. P.; Zähringer, K. Numerical study of the separation of two immiscible liquids in helical and straight pipes. Chemical Engineering and Processing - Process Intensification, 108654, 2021.[DOI:doi.org/10.1016/j.cep.2021.108654]
Kováts, P.; Martins, F.; Mansour, M.; Thévenin, D.; Zähringer, K.: Tomographic PIV measurements and RANS simulations of secondary flows inside a horizontally positioned helically coiled tube. Experiments in Fluids, 61, 117, 2020. [doi.org/10.1007/s00348-020-02950-6]
Kovats, P.; Velten, C.; Mansour, M.; Thevenin, D.; Zahringer, K. Mixing characterization in different helically coiled configurations by laser-induced fluorescence. Experiments in Fluids. 61, 203, 2020. DOI: 10.1007/s00348-020-03035-0
Mansour, M.; Khot, P.; Thévenin, D.; Nigam, K. D. P.; Zähringer, K. Optimal Reynolds number for liquid-liquid mixing in helical pipes. Chemical Engineering Science, 214, 114522, 2020. [doi.org/10.1016/j.ces.2018.09.046]
Mansour, M.; Khot, P.; Kováts, P.; Thévenin, D.; Zähringer, K.; Janiga, G. Impact of computational domain discretization and gradient limiters on CFD results concerning liquid mixing in a helical pipe. Chem. Eng. Sci., 383, 123121, 2020. [doi.org/10.1016/j.cej.2019.123121]
Mansour, M.; Thévenin, D.; Zähringer, K.: Numerical study of flow mixing and heat transfer in helical pipes, coiled flow inverters and a novel coiled configuration. Chemical Engineering Science, 221, 115690, 2020. [doi.org/10.1016/j.ces.2020.115690]
Mansour, M.; Zähringer, K.; Nigam, K. D.P.; Thévenin, D.; Janiga, G. Multi-objective optimization of liquid-liquid mixing in helical pipes using Genetic Algorithms coupled with Computational Fluid Dynamics. Chemical Engineering Journal, 391, 123570, 2020.[doi.org/10.1016/j.cej.2019.123570]
Jokiel, M.; Rätze, K. H. G.; Kaiser, N. M.; Künnemann, K.; Hollenbeck, J. P.; Dreimann, J.M.; Vogt, D. and Sundmacher K. Miniplant scale evaluation of a semibatch-continuous tandem reactor system for the hydroformylation of long-chain olefins. Ind. Eng. Chem. Res., 58,7, 2471-2480, 2019. [DOI: 10.1021/acs.iecr.8b03874]
Jokiel, M.; Kaiser, N. M.; Kováts, P.; Mansour, M.; Zähringer, K.; Nigam, K. D. P. and Sundmacher, K. Helically coiled segmented flow tubular reactor for the hydroformylation of long-chain olefins in a thermomorphic multiphase system. Chemical Engineering Journal, 377, 2019. [doi.org/10.1016/j.cej.2018.09.221]
Khot, P., Mansour, M., Thévenin, D., Nigam, K. D. P. and Zähringer, K.: Improving the mixing characteristics of coiled configurations by early flow inversion, Chemical Engineering Research and Design, 146, 324-335, 2019, [doi.org/10.1016/j.cherd.2019.04.016]
Mansour, M., Landage, A., Khot, P., Nigam, K. D. P., Janiga, G., Thévenin, D. and Zähringer, K.: Numerical Study of Gas–Liquid Two-Phase Flow Regimes for Upward Flow in a Helical Pipe, Industrial & Engineering Chemistry Research, 2019, pp. Doi: 10.1021/acs.iecr.9b05268.Mansour, M., Thévenin, D., Nigam, K. D. P. and Zähringer, K. Generally-valid optimal Reynolds and Dean numbers for efficient liquid-liquid mixing in helical pipes., Chem. Eng. Sci., 201, 382-385, 2019. [doi.org/10.1016/j.ces.2019.03.003]
Rätze, K. H. G.; Jokiel, M.; Kaiser, N. M.; Sundmacher, K. Cyclic Operation of a Semi-Batch Reactor for the Hydroformylation of Long-Chain Olefins and Integration in a Continuous Production Process. Chemical Engineering Journal, 377, 120453, 2019. [doi.org/10.1016/j.cej.2018.11.151]
Aydin, E.; Dominique, B.; Sundmacher, K. NMPC using Pontryagin’s Minimum Principle-Application to a two-phase semi-batch hydroformylation reactor under uncertainty. Com. Chem. Eng., 108, 47-56, 2018. [doi.org/10.1016/j.compchemeng.2017.08.010]
Aydin, E.; Dominique, B.; Sundmacher, K. Computationally efficient NMPC for batch and semi-batch processes using parsimonious input parameterization. Jour. Proc. Eng., 66, 12-22, 2018. [doi.org/10.1016/j.jprocont.2018.02.012]
Jokiel M.; Sundmacher K. Spezielle labortechnische Reaktoren: Wendelrohrreaktor. In: Reschetilowski W. (eds) Handbuch Chemische Reaktoren. Springer Reference Naturwissenschaften.Springer Spektrum, Berlin, Heidelberg. 2018. DOI: https://doi.org/10.1007/978-3-662-56444-8_46-1
Kaiser, N. M.; Flassig, R. J.; Sundmacher, K. Reactor-network synthesis via flux profile analysis. Chem. Eng. Jour., 335, 1018-1030, 2018. [doi.org/10.1016/j.cej.2017.09.051]
Kováts, P.; Pohl, D.; Thévenin, D.; Zähringer, K. Optical determination of oxygen mass transfer in a helically-coiled pipe compared to a straight horizontal tube. Chemical Engineering Science., 190, 237-285, 2018. [doi.org/10.1016/j.ces.2018.06.029]
Mansour, M.; Janiga, G.; Nigam, K.D.P.; Thevenin, D.; Zahringer, K. Numerical Study of heart transfer and thermal homogenization in a helical reactor. Chem. Eng., 177, 369-379, 2018. [doi.org/10.1016/j.ces.2017.11.031]
Zähringer, K.; Wagner, L.-M.; Thévenin, D.; Siegmund, P.; Sundmacher, K. Particle-image-velocimetry measurements in organic liquid multiphase systems for an optimal reactor design and operation. J. Visualization, 21(1), 5-17, 2018. [doi:10.1007/s12650-017-0435-5]
Aydin, E.; Bonvin, D.; Sundmacher, K. Dynamic optimization of constrained semi-batch processes using Pontryagin's minimum principle - An effective quasi-Newton approach. Comp. Chem. Eng., 99, 135-144, 2017. [doi.org/10.1016/j.compchemeng.2017.01.019]
Jokiel, M.; Wagner, L.-M.; Mansour, M.; Kaiser, N. M.; Zähringer, K.; Janiga, G.; Nigam, K. D. P.; Thévenin, D.; Sundmacher, K. Measurement and simulation of mass transfer and backmixing behavior in a gas-liquid helically coiled tubular reactor. Chem. Eng. Sci., 170, 410-421, 2017. [doi: https://doi.org/10.1016/j.ces.2017.01.027]
Kaiser, N.M., Jokiel, M., McBride, K., Flassig, R.J., Sundmacher, K. Optimal reactor design via Flux Profile Analysis for an Integrated Hydroformylation Process Using a Thermomorphic Solvent Systems for Catalyst Recovery. Ind. Eng. Chem. Res. 56, 11507-11518, 2017. [DOI:10.1021/acs.iecr.7b01939]
Mansour, M.; Liu, Z.; Janiga, G.; Nigam, K. D. P.; Sundmacher, K.; Thévenin, D.; Zähringer, K. Numerical study of liquid-liquid mixing in helical pipes. Chem. Eng. Sci., 172, 250-261, 2017. [doi: https://doi.org/10.1016/j.ces.2017.06.015]
Zähringer, K.; Wagner, L.-M.; Thévenin, D.; Siegmund, P.; Sundmacher, K. Particle-image-velocimetry measurements in organic liquid multiphase systems for an optimal reactor design and operation. J. Visualization, 1-13, 2017. [doi:10.1007/s12650-017-0435-5]
Zhou, T.; Zhou, Y.; Sundmacher, K. A hybrid stochastic–deterministic optimization approach for integrated solvent and process design. Chem. Eng. Sci., 159, 207-216, 2017. [doi: http://dx.doi.org/10.1016/j.ces.2016.03.011]
Kaiser, M. N.; Flassig, J. R.; Sundmacher, K. Design and Comparison of Optimal Reactor Concepts for the Hydroformylation of Olefins by Use of a Probabilistic Design Framework. 26th European Symposium on Computer Aided Process Engineering. 1365-1370, 2016. [http://hdl.handle.net/11858/00-001M-0000-002B-0FC8-7]
Kaiser, M. N.; Flassig, J. R.; Sundmacher, K. Probabilistic reactor design in the framework of elementary process functions. Comp. Chem. Eng., 94, 45-59, 2016. [doi.org/10.1016/j.compchemeng.2016.06.008]
McBride, K.; Gaide, T.; Vorholt, A. J.; Behr, A.; Sundmacher, K. Thermomorphic solvent selection for homogeneous catalyst recovery based on COSMO-RS. Chem. Eng. Process., 99, 97-106, 2016. [doi:10.1016/j.cep.2015.07.004]
McBride, K.; Kaiser, N. M.; Sundmacher, K. Integrated reaction-extraction process for the hydroformylation of long-chain alkenes with a homogeneuous catalyst. Comput. Chem. Eng., 2016.
[http://dx.doi.org/10.1016/j.compchemeng.2016.11.019]
Zhou, T.; Zhou, Y.; Sundmacher, K. A hybrid stochastic–deterministic optimization approach for integrated solvent and process design. Chem. Eng. Sci., 99, 1-10, 2016. [doi.org/10.1016/j.ces.2016.03.011]
Hentschel, B.; Kiedorf, G.; Gerlach, M.; Hamel, C.; Seidel-Morgenstern, A.; Freund, H.; Sundmacher, K. Model-Based Identification and Experimental Validation of the Optimal Reaction Route for the Hydroformylation of 1-Dodecene. Ind. Eng. Chem. Res., 54(6), 1755-1765, 2015. [doi:10.1021/ie504388t]
McBride, K.; Sundmacher, K. Data Driven Conceptual Process Design for the Hydroformylation of 1-Dodecene in a Thermomorphic Solvent System. Ind. Eng. Chem. Res., 54(26), 6761–6771, 2015. [doi:10.1021/acs.iecr.5b00795]
Zhou, T.; Lyu, Z.; Qi, Z.; Sundmacher, K. Robust design of optimal solvents for chemical reactions - A combined experimental and computational strategy. Chem. Eng. Sci., 137, 613-625, 2015. [doi:10.1016/j.ces.2015.07.010]
Zhou, T.; McBride, K.; Zhang, X.; Qi, Z.; Sundmacher, K. Integrated solvent and process design exemplified for a Diels-Alder reaction. AIChE J., 61(1), 147-158, 2015. [doi:10.1002/aic.14630]
Medeiros de Souza, L. G. Model optimization and techniques for the simulation of multiphase chemical reactors. Otto-von-Guericke-Universität Magdeburg, 2016. [More]
Peschel, A. Model-based design of optimal chemical reactors. Otto-von-Guericke-Universität Magdeburg, 2012.
[More]